
Functional Analysis M.Math (hons.) Second Semisteral Exam 2003-04

1. Problem: Let X be a finite dimensional normed linear space. Show that X is a Banach space.
Solution See Corollary 2.3.2 from the book ”Functional Analysis” by S Kesavan.

2. Problem: Let M = {f ∈ C([0, 1]) : f([0, 12 ]) = 0}. Let Φ : C([0, 1])/M → C([0, 1
2 ]) be defined by

Φ(π(f)) = f |[0, 1
2
] where π is the qutient map. Show that Φ is an onto isometry.

Solution To show that Φ is onto, let g ∈ C([0, 1
2 ]). Define a map f : [0, 1] → [0, 1] by f(x) := g(x)

if x ∈ [0, 12 ] and f(x) = g(12 ) for x ∈ [ 12 , 1]. Then, clearly f ∈ C([0, 1]) and Φ(π(f)) = f |[0, 1
2
] = g.

Let the norm on C([0, 1])/M is denoted by ‖|·‖| and is defined by ‖|f+M‖| := inf{‖f+g‖ : g ∈ M}
for any f ∈ C([0, 1]).
Now, ‖|π(f)‖| = inf{‖f + g‖ : g ∈ M}. Let λ := ‖f |[0, 1

2
]‖ = sup{|f(x)| : x ∈ [0, 12 ]} and

S := {‖f + g‖ : f ∈ C([0, 1]), g ∈ M}.
For g ∈ M and f ∈ C([0, 1]), ‖f + g‖ = sup{|f(x) + g(x)| : x ∈ [0, 1]} = Max{{sup{|f(x) + g(x)| :
x ∈ [0, 12 ]}, sup{|f(x) + g(x)| : x ∈ [ 12 , 1]}} = Max{λ, sup{|f(x) + g(x)| : x ∈ [ 12 , 1]}} ≥ λ i.e. λ is a
lower bound of S.
Now, let sup{|f(x) + g(x)| : x ∈ [0, 1

2 ] = c1 and sup{|f(x) + g(x)| : x ∈ [ 12 , 1]} = c2. If c1 ≥ c2
then we choose g = 0 and get inf(S) = λ. If c1 < c2 then assume that f attains c2 at some points.
Let p be a point in [ 12 , 1] such that f(p) = c2 and f(x) < c2 for x < p. Now, construct a function
g ∈ M such that g is a line joining the poins (12 , 0) and (0,−c2) and g(x) = −c2 for x > p. Then
‖f + g‖ = λ. And hence, λ = inf(S) = ‖|π(f)‖|.

3. Problem: For f ∈ C([0, 1]) define ‖f‖1 =
∫

|f |dx. Show that this is a norm. Show that this
norm is not equivalent to the supremum norm.
Solution To show that ‖‖1 is a norm it is enough to show that ‖f‖1 = 0 =⇒ f = 0 because other
conditions follow from the properties of integration of a continuous function on [0, 1]. Let ‖f‖1 = 0.
Now assume that f 6= 0 i.e. there exists a point x ∈ [0, 1] such that f(x) 6= 0. As f is continuous
|f | is positive in a interval around x which implies that ‖f‖1 is positive, a contradiction.
For the rest part, see Example:2.3.10 from the book ”Functional Analysis” by S Kesavan.

4. Problem: Let X and Y be Banach spaces. Let {T }n be a sequence of a compact operators.
Suppose T ∈ L(X,Y ) and ‖T − Tn‖ → 0. Show that T is a compact operator.
Solution See Proposition 8.1.1 from the book ”Functional Analysis” by S Kesavan.

5. Problem: Let {f}n ⊂ L2([0, 1]) be an orthonormal sequence. Define Ψ : L2([0, 1]) → l2 by
Ψ(f) =

(∫

ffndx
)

n≥1
. Show that Ψ is an onto map and Ψ∗ is a one-to-one map.

Solution Ψ(f) =
(∫

f f̄ndx
)

n≥1
= (< f, fn >)

n≥1 is well defined as
∑

|〈f, fn〉|
2 ≤ ‖f‖2 using

Bessel;s inequality.
Ψ(fn) = en where {en} is the standard basis for l2 and hence Ψ is onto. Also, 〈Ψ(f), en〉 = 〈f, fn〉
for any f ∈ L2([0, 1]).Therefore, Ψ∗(en) = fn and hence Ψ∗ is one-to-one because {fn} is a or-
thonormal set.

6. Problem: Let H be a Hilbert space. Show that N ∈ L(H) is a normal operator if and only if
‖N(x)‖ = ‖N∗(x)‖ for all x ∈ H . Hence or otherwise show that there exists a S ∈ L(H) such that
SN = N∗.
Solution N ∈ L(H) is a normal operator i.e. NN∗ = N∗N .
‖N(x)‖2 = 〈N(x), N(x)〉 = 〈N∗N(x), x〉 = 〈NN∗(x), x〉 = 〈N∗(x), N∗(x)〉 = ‖N∗(x)‖2 for all
x ∈ H .
Now, define a map S : N(H) → H by S(N(x)) := N∗(x).
‖S(N(x))‖ = ‖N∗(x)‖ = ‖N(x)‖ =⇒ ‖S‖ ≤ 1
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Therefore using Hahn Banach theorem, we a get a map denote it by S also satisfying SN(x) = N∗(x)
for all x ∈ H .

7. Problem: Let X be a Banach space. Let P 6= Q ∈ L(X) be projections. Show that P ∗, Q∗ are
projections in L(X∗). If PQ = QP show that ‖P −Q‖ ≥ 1.
Solution Let X be a Banach space. P ∈ L(X) is said to be projection if P 2 = P and adjoint of
A ∈ L(X) is denoted by A∗(∈ L(X∗)) and is defined by A∗(y∗)(x) := y∗(Ax) where x ∈ X and
y∗ ∈ X∗.
Suppose A,B ∈ L(X) then (AB)∗ = B∗A∗. Now as P 2 = P =⇒ (P ∗)2 = P ∗ i.e. P ∗ is a
projection. Similarly, Q∗ is also a projection.
Now, PQ = QP =⇒ P (1 − Q) = (1 − Q)P =⇒ P (1 − Q) is a projection. Similarly, Q(1 − P )
is a projection. As, P 6= Q and PQ = QP , therefore P (1 − Q) 6= Q(1 − P ) and atleast, one
of them is nonzero. Let P (1 − Q) is nonzero i.e. there is a unit vector x in its range and so,
(P −Q)x = (P −Q)P (1−Q)x = x which implies ‖P −Q‖ ≥ 1.
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