- 1. **Problem:** Let X be a finite dimensional normed linear space. Show that X is a Banach space. Solution See Corollary 2.3.2 from the book "Functional Analysis" by S Kesavan.
- 2. **Problem:** Let $M = \{f \in C([0,1]) : f([0,\frac{1}{2}]) = 0\}$. Let $\Phi : C([0,1])/M \to C([0,\frac{1}{2}])$ be defined by $\Phi(\pi(f)) = f|_{[0,\frac{1}{2}]}$ where π is the qutient map. Show that Φ is an onto isometry.

Solution To show that Φ is onto, let $g \in C([0, \frac{1}{2}])$. Define a map $f : [0, 1] \to [0, 1]$ by f(x) := g(x) if $x \in [0, \frac{1}{2}]$ and $f(x) = g(\frac{1}{2})$ for $x \in [\frac{1}{2}, 1]$. Then, clearly $f \in C([0, 1])$ and $\Phi(\pi(f)) = f|_{[0, \frac{1}{2}]} = g$. Let the norm on C([0, 1])/M is denoted by $\||\cdot\||$ and is defined by $\||f+M\|| := \inf\{\|f+g\| : g \in M\}$ for any $f \in C([0, 1])$. Now, $\||\pi(f)\|| = \inf\{\|f+g\| : g \in M\}$. Let $\lambda := \|f|_{[0, \frac{1}{2}]}\| = \sup\{|f(x)| : x \in [0, \frac{1}{2}]\}$ and $S := \{\|f+g\| : f \in C([0, 1]), g \in M\}$. For $g \in M$ and $f \in C([0, 1]), \|f+g\| = \sup\{|f(x) + g(x)| : x \in [0, 1]\} = \max\{\{\sup\{|f(x) + g(x)| : x \in [\frac{1}{2}, 1]\}\} \ge \lambda$ i.e. λ is a lower bound of S. Now, let $\sup\{|f(x) + g(x)| : x \in [0, \frac{1}{2}] = c_1$ and $\sup\{|f(x) + g(x)| : x \in [\frac{1}{2}, 1]\} = c_2$. If $c_1 \ge c_2$ then much that f attains a subset of the sum (if S) = 0 and $x \in \inf(S) = 0$.

then we choose g = 0 and get $\inf(S) = \lambda$. If $c_1 < c_2$ then assume that f attains c_2 at some points. Let p be a point in $[\frac{1}{2}, 1]$ such that $f(p) = c_2$ and $f(x) < c_2$ for x < p. Now, construct a function $g \in M$ such that g is a line joining the poins $(\frac{1}{2}, 0)$ and $(0, -c_2)$ and $g(x) = -c_2$ for x > p. Then $||f + g|| = \lambda$. And hence, $\lambda = \inf(S) = ||\pi(f)||$.

- 3. Problem: For f ∈ C([0,1]) define ||f||₁ = ∫ |f|dx. Show that this is a norm. Show that this norm is not equivalent to the supremum norm.
 Solution To show that ||||₁ is a norm it is enough to show that ||f||₁ = 0 ⇒ f = 0 because other conditions follow from the properties of integration of a continuous function on [0, 1]. Let ||f||₁ = 0. Now assume that f ≠ 0 i.e. there exists a point x ∈ [0, 1] such that f(x) ≠ 0. As f is continuous |f| is positive in a interval around x which implies that ||f||₁ is positive, a contradiction. For the rest part, see Example:2.3.10 from the book "Functional Analysis" by S Kesavan.
- 4. **Problem:** Let X and Y be Banach spaces. Let $\{T\}_n$ be a sequence of a compact operators. Suppose $T \in L(X, Y)$ and $||T - T_n|| \to 0$. Show that T is a compact operator. **Solution** See Proposition 8.1.1 from the book "Functional Analysis" by S Kesavan.
- 5. **Problem:** Let $\{f\}_n \subset L^2([0,1])$ be an orthonormal sequence. Define $\Psi : L^2([0,1]) \to l^2$ by $\Psi(f) = (\int ff_n dx)_{n\geq 1}$. Show that Ψ is an onto map and Ψ^* is a one-to-one map. **Solution** $\Psi(f) = (\int f\bar{f}_n dx)_{n\geq 1} = (\langle f, f_n \rangle)_{n\geq 1}$ is well defined as $\sum |\langle f, f_n \rangle|^2 \leq ||f||^2$ using Bessel; sinequality. $\Psi(f_n) = e_n$ where $\{e_n\}$ is the standard basis for l^2 and hence Ψ is onto. Also, $\langle \Psi(f), e_n \rangle = \langle f, f_n \rangle$ for any $f \in L^2([0,1])$. Therefore, $\Psi^*(e_n) = f_n$ and hence Ψ^* is one-to-one because $\{f_n\}$ is a orthonormal set.
- 6. **Problem:** Let *H* be a Hilbert space. Show that $N \in L(H)$ is a normal operator if and only if $||N(x)|| = ||N^*(x)||$ for all $x \in H$. Hence or otherwise show that there exists a $S \in L(H)$ such that $SN = N^*$. **Solution** $N \in L(H)$ is a normal operator i.e. $NN^* = N^*N$. $||N(x)||^2 = \langle N(x), N(x) \rangle = \langle N^*N(x), x \rangle = \langle NN^*(x), x \rangle = \langle N^*(x), N^*(x) \rangle = ||N^*(x)||^2$ for all $x \in H$. Now, define a map $S : N(H) \to H$ by $S(N(x)) := N^*(x)$. $||S(N(x))|| = ||N^*(x)|| = ||N(x)|| \implies ||S|| \le 1$

Therefore using Hahn Banach theorem, we a get a map denote it by S also satisfying $SN(x) = N^*(x)$ for all $x \in H$.

7. **Problem:** Let X be a Banach space. Let $P \neq Q \in L(X)$ be projections. Show that P^*, Q^* are projections in $L(X^*)$. If PQ = QP show that $||P - Q|| \ge 1$. **Solution** Let X be a Banach space. $P \in L(X)$ is said to be projection if $P^2 = P$ and adjoint of $A \in L(X)$ is denoted by $A^*(\in L(X^*))$ and is defined by $A^*(y^*)(x) := y^*(Ax)$ where $x \in X$ and

 $A \in L(X)$ is denoted by $A^* (\in L(X^*))$ and is defined by $A^*(y^*)(x) := y^*(Ax)$ where $x \in X$ and $y^* \in X^*$. Suppose $A, B \in L(X)$ then $(AB)^* = B^*A^*$. Now as $P^2 = P \implies (P^*)^2 = P^*$ i.e. P^* is a

Suppose $A, B \in L(X)$ then $(AB)^* = B^*A^*$. Now as $P^2 = P \implies (P^*)^2 = P^*$ i.e. P^* is a projection. Similarly, Q^* is also a projection.

Now, $PQ = QP \implies P(1-Q) = (1-Q)P \implies P(1-Q)$ is a projection. Similarly, Q(1-P) is a projection. As, $P \neq Q$ and PQ = QP, therefore $P(1-Q) \neq Q(1-P)$ and atleast, one of them is nonzero. Let P(1-Q) is nonzero i.e. there is a unit vector x in its range and so, (P-Q)x = (P-Q)P(1-Q)x = x which implies $||P-Q|| \ge 1$.